Гидравлические механизмы

Гидравлические системы и энергия

37Гидравлические системы

Гидравлические системы используются для передачи механической энергии с одного места в другое. Это происходит через использование энергии давления. Гидравлический насос приводится в действие механической энергией. Механическая энергия преобразуется в энергию давления и кинетическую энергию гидравлической жидкости и затем снова преобразуется в механическую энергию для выполнения работы.

Значение преобразования энергии

Энергия, которая передаётся в гидравлическую систему, преобразуется из механической энергии двигателя, которая приводит в действие гидравлический насос. Насос преобразует механическую энергию в поток жидкости, преобразуя механическую энергию в энергию давления и кинетическую энергию. Поток жидкости передаётся через гидравлическую систему и направляется к приводам цилиндров и моторов. Энергия давления и кинетическая энергия жидкости вызывает движение привода. При этом движении происходит ещё одно преобразование в механическую энергию.

Как это работает в гидравлическом экскаваторе

В гидравлических экскаваторах, первичная механическая энергия двигателя приводит в действие гидравлический насос. Насос направляет поток масла в гидравлическую систему. При движении привода под действием давления масла происходит ещё раз преобразование в механическую энергию. Стрела экскаватора может подниматься или опускаться, производится движение ковша и т.д.

Гидравлика и работа

Три элемента работы

Когда имеется какая либо работа, то для выполнения этой работы необходимы определённые условия. Необходимо знать, какая понадобится сила. Вам надо решить, как быстро необходимо произвести работу и вы должны определить направление работы. Это три условия работы: сила, скорость и направление используются в гидравлических терминах, как показано ниже.

38

Компоненты гидравлической системы

Основные компоненты

Гидравлическая система состоит из многих частей. Основными деталями являются насос и привод. Насос подаёт масло, преобразуя механическую энергию в энергию давления и кинетическую энергию. Привод является частью системы, которая преобразует гидравлическую энергию обратно в механическую энергию для выполнения работы. Другие детали, кроме насоса и привода, необходимы для полной работы гидравлической системы.

Бак: хранение масла

Клапаны: контроль за направлением и величиной потока или ограничение давления

Линии трубопровода: соединение деталей системы

Давайте посмотрим на две простые гидравлические системы. 

39

Пример 1, гидравлический домкрат

Что вы видите на рисунке, называется гидравлический домкрат. Когда вы прилагаете усилие к рычагу, ручной насос подаёт масло в цилиндр. Давление этого масла давит на поршень и поднимает груз. Гидравлический домкрат во многом напоминает гидравлический рычаг Паскаля. Здесь добавлен гидравлический бак. Обратный клапан установлен, чтобы держать масло в баке и цилиндре между ходом поршня.

На верхнем рисунке, давление удерживается, обратный клапан закрыт. Когда ручка насоса тянется вверх, впускной обратный клапан открывается и масло попадает из бака в камеру насоса.

Дальше ручка насоса двигается вниз. Давление масла закрывает впускной обратный клапан, но открывает выпускной обратный клапан. При этом, масло поступает в цилиндр и давит на поршень снизу вверх.

Нижний рисунок показывает открытый запорный клапан для соединения бака и цилиндра, позволяя маслу перетекать в бак, при этом поршень движется вниз.

40

Пример 2, работа гидравлического цилиндра

411. Во первых, имеется гидравлический бак, заполненный маслом и подсоединённый к насосу.

422. Далее, насос необходим для создания потока, но насос не всасывает масло из бака. Масло попадает в насос под действием силы тяжести.

3. Насос работает и качает масло. Важно понять, что насос перемещает только объём. Объём устанавливает скорость гидравлического действия. Давление создаётся нагрузкой и не создаётся насосом.

44434. Шланг от насоса соединён с распределительным клапаном. Масло поступает из насоса к клапану. Работа данного клапана заключается в направлении потока или к цилиндру, или в бак.

5. Следующим шагом является цилиндр, который выполняет фактическую работу. Два шланга от распределительного клапана соединены с цилиндром.

45466. Масло из насоса направляется в нижнюю полость поршня через распределительный клапан. Нагрузка вызывает сопротивление потоку, которое в свою очередь создаёт давление.

7. Система выглядит законченной, но это не так. Ещё необходима очень важная деталь. Мы должны знать, как защитить все компоненты от повреждения в случае внезапной перегрузки или другого происшествия. Насос продолжает работать и подавать масло в систему, даже если с системой 47произошло происшествие. Если насос подаёт масло и нет возможности для выхода масла, давление возрастает до тех пор, пока какая либо деталь не сломается. Мы устанавливаем предохранительный клапан, чтобы предотвратить это. Обычно он закрыт, но когда давление достигает установленной величины, предохранительный клапан открывается и масло течёт в бак.

488. Бак, насос, распределительный клапан, цилиндр, шланги соединения и предохранительный клапан являются основой гидравлической системы. Все эти детали необходимы.

Классификация насосов

Что такое насос?

49Подобно вашему сердцу, которое прокачивает кровь по вашему телу, насос является сердцем гидравлической системы. Насос - это часть системы, которая качает масло для совершения работы. Как мы писали раньше, гидравлический насос преобразует механическую энергию в энергию давления и кинетическую энергию жидкости.

Что такое гидравлический насос?

50Каждый насос создаёт поток. Жидкость перемещается из одного места в другое. Имеется два типа насосов перемещения:

- Насос принудительного действия

- Насос не принудительного действия

Водяной круг на рисунке - пример не принудительного насоса. Круг поднимает жидкость и двигает её.

Другой насос принудительного действия. Называется принудительного действия, так как насос нагнетает жидкость и препятствует возврату её назад. Если насос не может это делать, в системе не будет достаточного давления. Сегодня все гидравлические системы используют высокое давление, и таким образом необходимы насосы принудительного действия.

Типы гидравлических насосов

51Сегодня на многих машинах установлен один из трёх насосов:

- Шестерёнчатый насос

- Лопастный насос

- Поршневой насос

Все насосы работают по роторно-поршневому типу, жидкость приводится в действие вращением детали внутри насоса.

Поршневые насосы делятся на два типа:

- Аксиально поршневого типа

- Радиально поршневого типа

Насосы аксиально поршневого типа называются так, потому что поршни насоса расположены параллельно оси насоса.

Насосы радиально поршневого типа называются так, потому что поршни расположены перпендикулярно (радиально) оси насоса. Насосы обоих типов совершают возвратно поступательное движение. Поршни двигаются вперёд и назад и используют роторно поршневое движение.

52

Рабочий объём гидравлического насоса

Рабочий объём, значит объём масла, которое насос может прокачать или переместить в каждом цилиндре.

Гидравлические насосы разделяются на два типа:

- Фиксированного рабочего объёма

- Изменяемого рабочего объёма

Насосы фиксированного рабочего объёма прокачивают одинаковое количество масла за каждый цикл. Чтобы изменить объём такого насоса необходимо изменить скорость насоса. Нсосы с изменяемым рабочим объёмом могут менять объём масла в зависимости от цикла. Это может быть сделано без изменения скорости. Такие насосы имеют внутренний механизм, который регулирует выходное количество масла. Когда давление в системе падает, объём возрастает, когда давление в системе возрастает, объём уменьшается автоматически.

  Насос фиксированного рабочего объема Насос изменяемого рабочего объема
Мощность 53 54
Конструкция 55 56

Классификация привода

Что такое привод?

57Привод является частью гидравлической системой, которая производит энергию. Привод преобразует гидравлическую энергию в механическую энергию для совершения работы. Различают линейный и роторный приводы. Гидравлический цилиндр является линейным приводом. Усилие гидравлического цилиндра направлено прямолинейно. Гидравлический мотор является роторным приводом. Выходным усилием является крутящий момент и роторное действие.

58Гидравлические цилиндры

Гидравлические цилиндры подобно рычагу. Имеется два типа цилиндров.

Цилиндры однократного действия.

Гидравлическая жидкость может двигаться только в один конец цилиндра. Возврат поршня в первоначальное положение достигается действием силы тяжести.

Цилиндры двойного действия.

Гидравлическая жидкость может перемещаться в оба конца цилиндра, поэтому поршень может двигаться в обоих направлениях.

В обоих типах цилиндров, поршень двигается в цилиндре в направлении, в котором жидкость давит на поршень. Различные типы уплотнения используются в поршнях для предотвращения течи.

Гидравлический мотор

Подобно цилиндру, гидравлический мотор является приводом, только роторный привод.

59Принцип работы гидравлического мотора прямо противоположный работе гидравлического насоса. Насос нагнетает жидкость и гидравлический мотор работает от этой жидкости. Как мы писали раньше, гидравлический насос преобразует механическую энергию в энергию давления и кинетическую энергию жидкости. Гидравлический мотор преобразует гидравлическую энергию в механическую энергию.

При гидравлическом приводе, насосы и моторы работают вместе. Насосы приводятся в действие механически и нагнетают жидкость в гидравлические моторы.

Моторы приводятся в действие жидкостью от насоса и это движение в свою очередь вращает механические части.

Типы гидравлических моторов

Существует три типа гидравлических моторов и все они имеют внутренние движущиеся части, которые приводятся в действие входящим потоком, их название:

60- Шестеренчатый мотор

- Лопастный мотор

- Поршневой мотор

Рабочий объём и крутящий момент

Наработка мотора называется крутящим моментом. Это сила вращения вала мотора. Крутящий момент это величина измерения силы на единицу длинны, она не включает скорость.

61Крутящий момент мотора определяется максимальным давлением и объёмом жидкости, которое может переместить во время каждого цикла. Скорость мотора определяется величиной потока. Больше величина потока, быстрее скорость.

Крутящий момент – это сила вращения вала мотора

62Крутящий момент равен силе × расстояние

Классификация клапана

Какие бывают клапаны?

Клапаны являются средствами управления в гидравлической системе. Клапаны регулируют давление, направление потока и величину потока в гидравлической системе.

Различают три типа клапанов:

- Клапаны регулирования давления

- Клапаны управления направлением

- Клапаны регулирования величины

На рисунке ниже можно увидеть как работают клапаны.

Клапаны регулирования давления

63Эти клапаны используются для ограничения давления в гидравлической системе, разгрузки насоса или настройки давления цепи. Имеется несколько типов клапанов регулирования давления, некоторые из них предохранительные, клапаны уменьшения давления и разгрузочные клапаны.

Клапан управления направлением

64Этот клапан управляет выбором направления потока гидравлической системы. Типичным клапаном управления направлением является распределительный клапан и золотник.

Клапан регулирования величины

Этот клапан управляет скоростью потока масла гидравлической системы.

У правление происходит за счёт ограничения потока или отведения его. Несколько различных типов клапана регулирования величины являются клапан управления потоком и клапан деления потока.

Эти клапаны управляются различными способами: вручную, гидравлически, электрически, пневматически.

Клапаны управления давлением

Клапан управления давлением используется для следующих целей:

Ограничения давления внутри системы

Уменьшения давления

Настройка входящего давления цепи

Разгрузки насоса

Предохранительный клапан иногда называют защитным клапаном, потому что он уменьшает чрезмерное давление, когда оно достигает крайней величины.

Предохранительный клапан предупреждает детали системы от перегрузки.

Существует два типа предохранительного клапана:

Предохранительный клапан прямого действия, которые просто открываются и закрываются.

Предохранительный клапан пилотной линии, который имеет пилотную линию для управления главным предохранительным клапаном.

Предохранительный клапан прямого действия обычно используется в местах, где объём потока небольшой и работа редко повторяется. Предохранительный клапан пилотной линии необходим в местах, где большой объём масла должен быть уменьшен.

65

Клапаны управления направлением

Этот клапан устанавливает поток масла, как регулировщик управляет дорожным движением. Такие клапаны:

- Обратный клапан

- Золотниковый клапан

Используются различные типы конструкции управления направлением.

Обратный клапан использует тарельчатый клапан и пружину для направления потока в одном направлении. Золотниковый клапан использует подвижный цилиндрический золотник. Золотник двигается вперёд и назад, открывая и закрывая каналы для прохождения потока.

66

Обратный клапан

67Обратный клапан устроен просто. Он называются клапаном одного потока. Это значит, что он открыт для прохождения потока в одном направлении, но закрыт для протекания масла в обратном направлении.

На рисунке ниже можно увидеть работу обратного клапана. Это обратный клапан, который устроен для сквозного потока на одной линии. Тарельчатый клапан открывается когда впускное давление больше, чем выпускное давление. Когда клапан открыт, масло свободно течёт. Тарельчатый клапан закрывается, когда впускное давление падает. Клапан прерывает поток в обратном направлении и останавливает поток под действие выпускного давления.

Золотниковый клапан

Золотниковый клапан является типичным распределительным клапаном, который используется для управления работой привода. Что обычно называют распределительным клапаном и является золотниковым клапаном. Золотниковый клапан направляет поток масла для начала, проведения и окончания работы.

Когда золотник двигается из нейтрального положения вправо или влево, происходит открытие одних каналов и закрытие других каналов. Таким способом масло подводится к и от привода. Буртик золотника плотно перекрывает входящие и выходящие потоки масла. Золотник изготовлен из прочного материала и имеет гладкую, прецизионную, крепкую поверхность. Он даже покрыт хромом для препятствования износу, ржавчине и повреждениям.

Золотниковый клапан на рисунке показывает три позиции, нейтральная, левая и правая.

Мы называем его четырёхпозиционный, потому что он имеет четыре возможных направления, которые направлены в обе полости цилиндра, в бак и в насос. Когда мы перемещаем золотник влево, поток масла направлен от насоса в левую полость цилиндра и поток из правой полости цилиндра направлен в бак. Как результат, поршень двигается вправо.

Если мы сдвигаем золотник вправо, действия прямо противоположные, соответственно поршень двигается вправо. В центральной позиции, нейтральной, масло направлено в бак. Каналы в обои полости цилиндра закрыты.

68

69

70Клапаны регулирования величины

Как мы писали раньше, клапан регулирования величины работает в одном из двух направлений. Он или перекрывает поток, или меняет его направление.

Клапан управления потоком используется для управления скоростью привода посредством измерения потока. Измерение подразумевает измерение или регулирование скорости потока к или от привода. Клапан разделения потока регулирует объём потока, но так же разделяет потоки между двумя или более цепями.

Клапан деления потока управляет величиной потока, но так же разделяет потоки между двумя или более цепями.

Пропорциональный делитель потока

72Назначение этого клапана - деление потока от одного источника.

Делитель потока на рисунке ниже делит потоки в соотношении 75-25 на выходе. Это возможно, потому, что вход №1 больше входа №2.

Гидравлическая схема

Ранее в тексте приводились рисунки, помогающие понять принципы работы гидравлической системы и её составных частей. Мы старались показать конструкцию на различных примерах и использовали различные типы рисунков. Рисунки, которые мы используем, называются графической схемой.

Каждая часть системы и каждая линия изображается графическим символом.

Ниже приведены примеры графической диаграммы.

Важно понять, что назначение графической диаграммы не показать устройство деталей. Графическая диаграмма используется только для показа функций и мест соединений.

73

Классификация линий

Все составные части гидравлической системы соединены линиями. Каждая линия имеет своё название и выполняет свою функцию. Основные линии:

Рабочие линии: Напорная линия, Линия всасывания, Сливная линия

Не рабочие линии: Дренажная линия, Пилотная линия

Масло рабочей линии участвует в преобразовании энергии. Линия всасывания доставляет масло из бака к насосу. Напорная линия доставляет масло от насоса к приводу под давлением для совершения работы и сливная линия возвращает масло от привода обратно в бак.

Не рабочие линии являются дополнительными линиями, которые не используются в основных функциях системы. Дренажная линия используется для возврата в бак лишнего масла или масла пилотной линии. Пилотная линия используется для управления рабочими органами.

74

Преимущества и недостатки гидравлической системы

Преимущества

1. Гибкость - ограниченное количество жидкости является более гибким источником энергии и имеет хорошие свойства передачи энергии. Использование рукавов высокого давления и шлангов вместо механических частей позволяет устранить многие проблемы.

2. Увеличение силы - Малая сила может управлять большой силой.

3. Плавность – Работа гидравлической системы плавная и тихая. Вибрация сведена к минимуму.

4. Простота - Имеется несколько подвижных деталей и небольшое число соединений гидравлической системы, а также самостоятельная смазка.

5. Компактность - Устройство составных частей очень простое по сравнению с механическими устройствами. Например, размер гидравлического мотора значительно меньше электрического мотора, который производит такую же энергию.

6. Экономия - Простота и компактность обеспечивает экономичность системы при небольших потерях мощности.

7. Безопасность - Предохранительный клапан защищает систему от перегрузок.

Недостатки

НЕОБХОДИМОСТЬ СВОЕВРЕМЕННОГО ТЕХНИЧЕСКОГО ОБСЛУЖИВАНИЯ - Компоненты гидравлической системы являются прецизионными деталями и работают под высоким давлением. Своевременное техническое обслуживание необходимо для защиты от ржавчины, загрязнения масла, повышенного износа, поэтому использование и замена соответствующего масла является необходимостью.

Полезно:

РУКОВОДСТВО ПО ОБСЛУЖИВАНИЮ ГИДРАВЛИЧЕСКИХ СИСТЕМ:
- Предупреждения выхода из строя гидравлической системы
- Выявление загрязнения гидравлических систем и очистка
- Проверка
Сервис гидравлических систем строительной и специальной техники, промышленных гидравлических систем

Контакты

  • home142200 РОССИЯ, МОСКОВСКАЯ ОБЛАСТЬ
  • mapГ. СЕРПУХОВ, УЛ. ВОРОШИЛОВА, Д. 58
  • phone+7 (916) 696-55-11
  • phone+7 (968) 551-71-75
  • mailINFO@GUDREY.RU